

JOURNAL PAPERS AND CONFERENCE PROCEEDINGS THAT DETAIL THE USE OF Vision RT TECHNOLOGY

VISI⊕∩rt | Guiding Radiation Therapy™

JOURNAL PAPERS AND CONFERENCE PROCEEDINGS THAT DETAIL THE USE OF Vision RT TECHNOLOGY.

Accuracy

Rudat, V., Shi, Y., et al. (2023).

Setup accuracy and margins for surfaceguided radiotherapy (SGRT) of head, thorax, abdomen, and pelvic target volumes. *Scientific Reports, [online]* 13(1),

p.17018.

Qubala A, et al. (2023)

Comparative evaluation of a surfacebased respiratory monitoring system against a pressure sensor for 4DCT image reconstruction in phantoms, *Journal of Applied Clinical Medical Physics*.

Sasaki, Makoto, et al. (2023)

New Patient Setup Procedure Using Surface-Guided Imaging to Reduce Body Touch and Skin Marks in Whole-Breast Irradiation during the COVID-19 Pandemic.

Radiological Physics and Technology

Shun Zhou, et al. (2021).

"Development and Longitudinal Analysis of Plan-Based Streamlined Quality Assurance on Multiple Positioning Guidance Systems With Single Phantom Setup." *Frontiers in Oncology Volume 11.*

Covington EL, Stanley DN, et al. (2020).

"Surface guided imaging during stereotactic radiosurgery with automated delivery." Journal of Applied Clinical Medical Physics. 2020 Dec;21(12):90-95.

Wiant D, et al. (2019).

"Direct comparison between surface imaging and orthogonal radiographic imaging for SRS localization in phantom." J Appl Clin Med Phys 2019; 20:1:137–

<u>144</u>

Tang X, et al. (2014).

"Clinical experience with 3-dimensional surface matching-based deep inspiration breath hold for left-sided breast cancer radiation therapy." <u>Pract Radiat Oncol 2014;4 (3):e151-158.</u>

Gopan, O., et al. (2012).

"Evaluation of the accuracy of a 3D surface imaging system for patient setup in head and neck cancer radiotherapy." Int J Radiat Oncol Biol Phys 84(2): 547-

552.

Breast DIBH

Rudat, V., Shi, Y., Zhao, R. and Yu, W. (2024).

Setup margins based on the inter- and intrafractional setup error of left-sided breast cancer radiotherapy using deep inspiration breath-hold technique (DIBH) and surface guided radiotherapy (SGRT). Journal of Applied Clinical Medical

Physics.

Li, Guang, et al. (2022).

A uniform and versatile surface-guided radiotherapy procedure and workflow for high-quality breast deep-inspiration breath-hold treatment in a multi-center institution. Journal of applied clinical medical physics, e13511.

Rossi, Maija; Laaksomaa, Marko; Aula, Antti (2022).

Patient setup accuracy in DIBH radiotherapy of breast cancer with lymph node inclusion using surface tracking and image guidance. <u>Medical dosimetry: official journal of</u> <u>the American Association of Medical</u> <u>Dosimetrists.</u>

Penninkhof, J, et al. (2022).

Evaluation of image-guided and surface-guided radiotherapy for breast cancer patients treated in deep inspiration breath-hold: A single institution experience. <u>Technical innovations & patient support</u> in radiation oncology 21, pp. 51–57.

Sauer, et al. (2022)

"Prerequisites for the clinical implementation of a markerless SGRTonly workflow for the treatment of breast cancer patients." <u>Strahlenther Onkol (2022).</u>

Ibrahim Duhaini, Bilal Shahine, Youssef Zeidan, Abbas Mkanna, Ahmad Maarouf & Mahmoud Korek (2021).

"The effectiveness of the DIBH technique in protecting the heart of radiotherapy breast cancer patients treated at the American University of Beirut Medical Center in Lebanon." *Health and Technology (2021).* Laaksomaa M, et al. (2021).

"Comparison of three differently shaped ROIs in free-breathing breast radiotherapy setup using surface guidance with AlignRT[®]." <u>Medica Journals: ISSN: 1507-1367.</u> <u>e-ISSN: 2083-4640</u> Hamming, V. C., C. Visser, E. Batin, L. N. McDermott, D. M. Busz, S. Both, J. A. Langendijk and N. M. Sijtsema (2019). "Evaluation of a 3D surface imaging system for deep inspiration breath-hold patient positioning and intra-fraction

monitoring." Radiat. Oncol. 14(1): 125.

Zagar T, et al. (2017).

"Utility of Deep Inspiration Breath Hold for Left-Sided Breast Radiation Therapy in Preventing Early Cardiac Perfusion Defects: A Prospective Study." Int J Radiat Oncol Biol Phys 2017;97 (5):903-909.

Zagar TM, Cardinale DM, Marks, LB. (2016).

"Breast cancer therapy-associated cardiovascular disease." Nat Rev Clin Oncol 2016;13 (3):172-184.

Tang X, et al. (2015).

"Dosimetric effect due to the motion during deep inspiration breath hold for left-sided breast cancer radiotherapy." J Appl Clin Med Phys 2015;16 (4):5358.

Rochet N, et al. (2015).

"Deep inspiration breath-hold technique in left-sided breast cancer radiation therapy: Evaluating cardiac contact distance as a predictor of cardiac exposure for patient selection." *Pract Radiat Oncol 2015;5 (3):e127-134.*

Cheung, Y., et al. (2015).

"SU-F-BRB-03: Quantifying Patient Motion During Deep-Inspiration Breath-Hold Using the ABC System with Simultaneous Surface Photogrammetry." <u>Medical Physics 42(6Part25): 3530-</u> 3530.

Tanguturi SK, et al. (2015).

"Prospective assessment of deep inspiration breath-hold using 3-dimensional surface tracking for irradiation of left-sided breast cancer." Pract Radiat Oncol 2015;5 (6):358-365.

Taylor CW, et al. (2015).

"Exposure of the Heart in Breast Cancer Radiation Therapy: A Systematic Review of Heart Doses Published During 2003 to 2013." Int J Radiat Oncol Biol Phys 2015;93 (4):845-853.

Lemanski C, et al. (2014).

"Image-guided radiotherapy for cardiac sparing in patients with left-sided breast cancer." <u>Front Oncol 2014;4:257.</u>

Rong Y, et al. (2014).

"Improving intra-fractional target position accuracy using a 3d surface surrogate for left breast irradiation using the respiratory-gated deepinspiration breath-hold technique." *PLoS One* 2014;9 (5):e97933.

Darby SC, et al. (2013).

"Risk of Ischemic Heart Disease in Women after Radiotherapy for Breast Cancer." N Engl J Med 2013;368 (11):987-998.

Gierga DP, et al. (2012).

"A voluntary breath-hold treatment technique for the left breast with unfavorable cardiac anatomy using surface imaging."

Int J Radiat Oncol Biol Phys 2012;84 (5):e663-668.

Lyatskaya, Y., et al. (2011).

"Validation of Align RT System for Breast Radiation Therapy with Deep Inspiration Breath Hold (DIBH) Technique." Med Phys 38.

Cervino LI, et al. (2009).

"Using surface imaging and visual coaching to improve the reproducibility and stability of deepinspiration breath hold for left-breastcancer radiotherapy." *Phys Med Biol* 2009;54 (22):6853-6865.

Harris EE. (2008).

"Cardiac mortality and morbidity after breast cancer treatment." Cancer Control 2008;15 (2):120-129.

Flampouri S, et al. (2008).

"Position Verification of Breast Treatment with Breath-Hold Technique Using 3D-Surface and Fluoroscopic Imaging."

Medical Physics 2008;35 (6):2713-2713.

Harris EE, et al. (2006).

"Late cardiac mortality and morbidity in early-stage breast cancer patients after breast-conservation treatment." J Clin Oncol 2006;24 (25):4100-4106.

Clarke M, et al. (2005).

"Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: An overview of the randomised trials." *Lancet* 2005;366 (9503):2087-2106.

Marks LB, et al. (2005).

"The incidence and functional consequences of rt-associated cardiac perfusion defects." Int J Radiat Oncol Biol Phys 2005;63 (1):214-223.

Breast FB

Naidoo, W; Leech, M (2022).

Feasibility of surface guided radiotherapy for patient positioning in breast radiotherapy versus conventional tattoo-based setups- a systematic review.

Technical innovations & patient support in radiation oncology 22, pp. 39–49.

Sorgato, et al. (2022)

"Benchmarking the AlignRT surface deformation module for the early detection and quantification of oedema in breast cancer radiotherapy." <u>Technical Innovations & Patient Support</u> <u>in Radiation Oncology, ISSN: 2405-6324,</u> <u>Vol: 21, Page: 16-22</u>

Sauer, et al. (2021).

Region of interest optimization for radiation therapy of breast cancer. *Journal of applied clinical medical physics.*

González-Sanchis, A., Brualla-González, L., Fuster-Diana, C. et al. (2021).

"Surface-guided radiation therapy for breast cancer: more precise positioning." *Clin Transl Oncol (2021).*

Cravo Sá, A., A. Fermento, D. Neves, S. Ferreira, et al. (2018)

"Radiotherapy setup displacements in breast cancer patients: 3D surface imaging experience." <u>Reports of Practical Oncology and</u> <u>Radiotherapy 23(1): 61-67.</u>

O'Connor, et al. (2014). "A Review of the Magnitude of Patient Imaging Shifts in Relation to Departmental Policy Changes."

Med Phys 2014;41 (158).

Padilla L, et al. (2014).

"Assessment of interfractional variation of the breast surface following conventional patient positioning for whole-breast radiotherapy." J Appl Clin Med Phys 2014;15 (5):4921.

Shah AP, et al. (2013).

"Clinical evaluation of interfractional variations for whole breast radiotherapy using 3-dimensional surface imaging." *Pract Radiat Oncol 2013;3 (1):16-25.*

Wiant D, et al. (2012).

"The Accuracy of AlignRT Guided Set-up for Whole Breast and Chestwall Irradiation." Med Phys 2012;39.

Chang AJ, et al. (2012).

"Video surface image guidance for external beam partial breast irradiation." *Pract Radiat Oncol 2012;2* (2):97-105.

Deantonio, L., et al. (2011).

"Detection of setup uncertainties with 3D surface registration system for conformal radiotherapy of breast cancer."

Rep Pract Oncol Radiother 16(3): 77-81.

Miller DA, et al. (2008).

"Inter-Fraction and Intra-Fraction Breast Motion Localized Using AlignRT for Early Breast Cancer." <u>Int J Radiat Oncol Biol Phys 2008;72</u> (1):S189-S190.

Gierga, D. P., et al. (2008).

"Comparison of target registration errors for multiple image-guided techniques in accelerated partial breast irradiation." Int J Radiat Oncol Biol Phys 70(4): 1239-1246.

Riboldi, M., et al. (2007).

"Quantitative Assessment of Surface Deformation in Accelerated Partial Breast Irradiation." <u>International Journal of Radiation</u> <u>Oncology • Biology • Physics 69(3): S669.</u>

Schöffel, P. J., et al. (2007).

"Accuracy of a commercial optical 3D surface imaging system for realignment of patients for radiotherapy of the thorax." <u>Phys Med Biol 52(13): 3949-3963.</u>

Bert C, et al. (2006).

"Clinical experience with a 3D surface patient setup system for alignment of partial-breast irradiation patients." *Int J Radiat Oncol Biol Phys 2006;64* (4):1265-1274.

Pediatric

Nalley, Catlin (2022).

Reducing Anesthesia Use Among Pediatric Radiation Therapy Patients. Oncology Times 44 (1), p. 27.

Chapman, et al. (2021)

"Impact of Pediatric Radiation Oncology With Movie Induced Sedation Effect (PROMISE) on Patient Movement and General Anesthesia Use in Pediatric Radiation Therapy." International Journal of Radiation Oncology • Biology • Physics111 (3), S92.

Sueyoshi, M., et al. (2018).

"Eliminating Daily Shifts, Tattoos, and Skin Marks: Streamlining Isocenter Localization With Treatment Plan Embedded Couch Values for External Beam Radiation Therapy." Practical Radiation Oncology.

Rwigema, J. M., et al. (2017).

"Palliative radiation therapy for superior vena cava syndrome in metastatic Wilms tumor using 10XFFF and 3D surface imaging to avoid anesthesia in a pediatric patient-a teaching case." Adv Radiat Oncol 2(1): 101-104.

Patient Safety

Blake, N., Pereira, L., et al. (2021).

Surface-guided radiotherapy for lung cancer can reduce the number of close patient contacts without compromising initial setup accuracy. *Technical Innovations & Patient Support*

in Radiation Oncology, 20, pp.61–63.

Wiant, D. B., et al. (2016).

"A novel method for radiotherapy patient identification using surface imaging." J Appl Clin Med Phys 17(2): 271-278.

Manger RP, et al. (2015). "Failure mode and effects analysis and fault tree analysis of surface image guided cranial radiosurgery." Med Phys 2015;42 (5):2449-2461.

Pelvis

Qubala, A., Schwahofer, A., et al. (2023).

Optimizing the Patient Positioning Workflow of Patients with Pelvis, Limb, and Chest/Spine Tumors at an Ion-Beam Gantry based on Optical Surface Guidance. <u>Advances in Radiation Oncology, [online]</u> 8(2), p.101105.

Krengli M, et al. (2016).

"Three-dimensional surface and ultrasound imaging for daily IGRT of prostate cancer." <u>Radiat Oncol 2016;11(1):159</u>.

Krengli M, et al. (2016).

"Three-dimensional surface and ultrasound imaging for daily IGRT of prostate cancer." <u>Radiat Oncol 2016;11(1):159</u>.

Apicella G, et al. (2016).

"Three-dimensional surface imaging for detection of intra-fraction setup variations during radiotherapy of pelvic tumors." Radiol Med 2016;121 (10):805-810.

Proton

Macfarlane, M.T., et al. (2021).

Comparison of the dosimetric accuracy of proton breast treatment plans delivered with SGRT and CBCT setups. Journal of Applied Clinical Medical Physics, [online] 22(9), pp.153–158.

Wang X., et al. (2019)

A novel approach to Verify air gap and SSD for proton radiotherapy using surface imaging. <u>Radiation Oncology, 2019 Dec</u> 11;14(1):224.

Batin E., et al. (2018).

Reducing X-ray imaging for proton postmastectomy chest wall patients. *Practical Radiation Oncology*, 8(5):e266-e274.

Mutter, R.W., et al. (2017).

Initial clinical experience of postmastectomy intensity modulated proton therapy in patients with breast expanders with metallic ports. *Practical Radiation Oncology, pp.e243–e252.*

Sarcoma

Gierga DP, et al. (2014). "Analysis of setup uncertainties for extremity sarcoma patients using

surface imaging." <u>Pract Radiat Oncol 2014;4 (4):261-266.</u>

SBRT / SABR

Dai, Z., He, Q., Zhu, L., et al. (2023).

Automatic prediction model for online diaphragm motion tracking based on optical surface monitoring by machine learning. *Quantitative imaging in medicine and*

surgery, [online] 13(4), pp.2065–2080.

Guo, H., Wu, W., H, Y. and Zhang, H. (2023).

SGRT-based stereotactic body radiotherapy for lung cancer setup accuracy and margin of the PTV. Journal of Applied Clinical Medical Physics.

Kaučić, et al. (2022)

"Stereotactic Body Radiotherapy for Locally Advanced Pancreatic Cancer Using Optical Surface Management System – AlignRT as an Optical Body Surface Motion Management in Deep Breath Hold Patients: Results from a Single-Arm Retrospective Study" <u>Cancer Manag Res. 2022;14:2161-2172</u>

Heinzerling, J. H. et al. (2021).

Prospective Study of Surface Guided Radiation Therapy (SGRT) for Breath Hold SBRT Treatments of the Lung: Analysis of Reliability of Surface Guidance Alone for Internal Tumor Position During Breath Hold. International journal of radiation oncology, biology, physics 111 (35), e539.

Naumann, Batista et al. (2020).

"Feasibility of Optical Surface-Guidance for Position Verification and Monitoring of Stereotactic Body Radiotherapy in Deep-Inspiration Breath-Hold." *Front Oncol*. 2020 Sep 25;10:573279.

Bo Zhao, et al. (2020).

"Surface Guided Motion Management in Glottic Larynx Stereotactic Body Radiation Therapy." <u>September 2020, The Green Journal:</u> <u>Radiotherapy & Oncology</u>

JH Heinzerling, et al. (2020).

"Use of surface-guided radiation therapy in combination with IGRT for setup and intrafraction motion monitoring during stereotactic body radiation therapy treatments." February 2020, Journal of Applied Clinical Medical Physics

Tanja Alderliesten, et al. (2012).

"3D surface imaging for monitoring intrafraction motion in frameless stereotactic body radiotherapy of lung cancer."

Radiotherapy and Oncology Volume 105, Issue 2, November 2012

H Jin, Z Su. (2012).

"A Comprehensive Evaluation of Real-Time Motion Tracking of a Surface Imaging System for Lung Treatment." Med Phys. 2012 Jun; Volume 39 (Issue 6 Part 13):3755

SRS

Foster, R.D., Moeller, B.J., et al. (2023). Dosimetric Analysis of Intra-Fraction Motion Detected by Surface-Guided Radiation Therapy During Linac Stereotactic Radiosurgery. Advances in Radiation Oncology, [online] 8(3), p.101151.

Zhou, S., Li, J., Zhu, X. et al. (2022).

Initial clinical experience of surface guided stereotactic radiation therapy with open-face mask immobilization for improving setup accuracy: a retrospective study. Radiat Oncol 17, 104 (2022).

Shun Zhou, et al. (2022)

"Initial clinical experience of surface guided stereotactic radiation therapy with open-face mask immobilization for improving setup accuracy: a retrospective study." Radiat Oncol 17, 104 (2022)

Jursinic P, et al. (2022)

"Positions of radiation isocenter and the couch rotation center established by Winston-Lutz and optical measurements." Technical Innovations & Patient Support in Radiation Oncology, ISSN: 2405-6324, Vol: 21, Page: 46-50

Foster R, et al. (2021)

"Dosimetric Analysis of Intra-Fraction Motion Detected by Surface Guided Radiation Therapy During Linac Stereotactic Radiosurgery." International Journal of Radiation Oncology*Biology*Physics, 111(3), e540.

Gregucci, F, et al. (2021).

Brain Linac-Based Radiation Therapy: "Test Drive" of New Immobilization Solution and Surface Guided Radiation Therapy.

JPM 11 (12), p. 1351.

Lee, Sang Kyu, et al. (2021).

Accuracy of surface-guided patient setup for conventional radiotherapy of brain and nasopharynx cancer. Journal of applied clinical medical physics.

Ornelas, et al. (2021).

Assessment of intra-fraction motion during automated linac-based SRS treatment delivery with an open face mask system. Physica medica 92, pp. 69–74.

Zhang, Lei, et al. (2021).

Commissioning of optical surface imaging systems for cranial frameless stereotactic radiosurgery. Journal of applied clinical medical physics 22 (5), pp. 182-190.

Covington, EL, et al. (2020)

"Surface guided imaging during stereotactic radiosurgery with automated delivery." J Appl Clin Med Phys.

Palmer J.D., et al. (2020)

"Single-Isocenter Multitarget Stereotactic Radiosurgery Is Safe and Effective in the Treatment of Multiple Brain Metastases." Advances in Radiation Oncology, ISSN: 2452-1094, Vol: 5, Issue: 1, Page: 70-76

Covington EL, et al. (2019).

"Optical surface guidance for submillimeter monitoring of patient position during frameless stereotactic radiotherapy." Journal of Applied Clinical Medical Physics 2019;20 (6):91-98.

Jursinic, P. (2018).

"Comparison of Head Immobilization with a Metal Frame and Two Different Models of Face Masks." Journal of Cancer and Cure 1(1): 1-7.

Oliver, J. A., et al. (2017).

"Orthogonal image pairs coupled with OSMS for noncoplanar beam angle, intracranial, single-isocenter, SRS treatments with multiple targets on the Varian Edge radiosurgery system." Adv Radiat Oncol 2(3): 494-502.

Wen N, et al. (2016).

"Technical Note: Evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system." Med Phys 2016;43 (5):2527.

Smith T, et al. (2016).

"Characterization of a High-Definition Optical Patient Surface Tracking System Across Five Installations." Med Phys 2016;43.

Chinsky, B., et al. (2016).

"Feasibility of Using a Commercially Available Surface Guided Radiotherapy System with An Open- Face SRS Immobilization System." Medical Physics 43(6): 3611-3611.

Mancosu P, et al. (2016).

"Accuracy evaluation of the optical surface monitoring system on edge linear accelerator in a phantom study." Med Dosim 2016;41 (2):173-179.

Wen N, et al. (2015).

"Characteristics of a novel treatment system for linear accelerator-based stereotactic radiosurgery. J Appl Clin Med Phys 2015;16 (4):5313.

Lau SK, et al. (2015).

"Single-Isocenter Frameless Volumetric Modulated Arc Radiosurgery for Multiple Intracranial Metastases." Neurosurgery 2015;77 (2):233-240; discussion 240.

Li G, et al. (2015).

"Clinical experience with two frameless stereotactic radiosurgery (fSRS) systems using optical surface imaging for motion monitoring."

J Appl Clin Med Phys 2015;16 (4):5416.

Pham NL, et al. (2014).

"Frameless, real-time, surface imagingguided radiosurgery: Update on clinical outcomes for brain metastases." Translational Cancer Research 2014;3 (4):351-357.

Paravati AJ, et al. (2014).

"Initial clinical experience with surface image guided (SIG) radiosurgery for trigeminal neuralgia." Translational Cancer Research 2014;3 (4):333-337.

Baker B Sullivan T. (2013).

"Trigeminal Rhizotomy Performed with Modern Image-guided Linac: Case Report." Cureus 2013;5 (9):e139.

Li G, et al. (2013).

"Migration from full-head mask to "openface" mask for immobilization of patients with head and neck cancer." Journal of Applied Medical Physics 2013;14(5):243

Wiersma RD, et al. (2013).

"Spatial and temporal performance of 3D optical surface imaging for real-time head position tracking." Med Phys 2013;40 (11):111712.

Pan H, et al. (2012).

"Frameless, real-time, surface imagingguided radiosurgery: Clinical outcomes for brain metastases." Neurosurgery 2012;71 (4):844-851.

Cervino LI, et al. (2012).

"Initial clinical experience with a frameless and maskless stereotactic radiosurgery treatment." Pract Radiat Oncol 2012;2 (1):54-62.

Li G, et al. (2011).

"Motion monitoring for cranial frameless stereotactic radiosurgery using videobased three-dimensional optical surface imaging." Med Phys 2011;38 (7):3981-3994.

Li G, et al. (2011).

"Optical Surface Imaging for Online Rotation Correction and Real-Time Motion Monitoring with Threshold Gating for Frameless Cranial Stereotactic Radiosurgery." Med Phys 2011;38.

Cervino LI. et al. (2010).

"Frame-less and mask-less cranial stereotactic radiosurgery: A feasibility study.'

Phys Med Biol 2010;55 (7):1863-1873.

InBore

Lee, J., Yeon Joo Kim, et al. (2023).

Application of surface-guided radiation therapy in prostate cancer: comparative analysis of differences with skin marking-guided patient setup. Radiation oncology journal, [online] 41(3), pp.172–177.

Nguyen, D., Khodri, M., et al.. (2023).

Investigating the robustness of the AlignRT InBoreTM co-calibration process and determining the overall tracking errors

Physica Medica, 108, p.102567.

Nguyen, D., Reinoso, R., Farah, J., et al. (2023).

Reproducibility of surface-based deep inspiration breath-hold technique for lung stereotactic body radiotherapy on a closed-bore gantry linac. Physics and Imaging in Radiation Oncology, [online] 26, p.100448.

Oku, Y., Toyota, M. and Yasumasa Saigo (2023).

Characteristics of detection accuracy of the patient setup using InBore optical patient positioning system. Radiological Physics and Technology.

Lorchel, F., Nguyen, D., et al. (2022).

Reproducibility of Deep-Inspiration Breath Hold treatments on Halcyon™ performed using the first clinical version of AlignRT InBore™: Results of CYBORE study.

Clinical and translational radiation oncology 35, pp. 90–96.

Nguyen, Farah et al. (2020).

"Commissioning and performance testing of the first prototype of AlignRT InBore™ a Halcyon™ and Ethos™. dedicated surface guided radiation therapy platform." Phys Med . 2020 Dec;80:159-166.

Flores-Martinez, E., L. I. Cervino, T.

Pawlicki and G. Y. Kim (2020). "Assessment of the use of different imaging and delivery techniques for cranial treatments on the Halcyon linac." J Appl Clin Med Phys 21(1): 53-61.

DoseRT

Alexander, Daniel A., et al. (2022)

One Year of Clinic Wide Cherenkov Imaging for Discovery of Quality Improvement Opportunities in Radiation Therapy.

Practical radiation oncology.

Other

Qubala, A., Shafee, J., Batista, et al. (2023).

Comparative evaluation of a surfacebased respiratory monitoring system against a pressure sensor for 4DCT image reconstruction in phantoms. Journal of Applied Clinical Medical Physics, [online] p.e14174.

Batista, V., et al. (2022).

Surface guided radiation therapy: An international survey on current clinical practice. Technical innovations & patient support in

radiation oncology 22, pp. 1–8.

Beer, K. T. (2022)

"Introduction of SGRT in clinical practice." Technical Innovations & Patient Support in Radiation Oncology, ISSN: 2405-6324, Vol: 21, Page: 27-30

Al-Hallaq, et al. (2021)

"The role of surface-guided radiation therapy for improving patient safety." *Radiotherapy and Oncology*, 163, pp. 229-236.

Blake, et al. (2021)

"Surface-guided radiotherapy for lung cancer can reduce the number of close patient contacts without compromising initial setup accuracy."

Technical Innovations & Patient Support in Radiation Oncology, ISSN: 2405-6324, Vol: 20, Page: 61-63

Wei, W.; Ioannides, P. J.; Sehgal, V.; Daroui, P. (2020).

Quantifying the impact of optical surface guidance in the treatment of cancers of the head and neck. J Appl Clin Med Phys.

Rigley, J., P. Robertson and L. Scattergood (2020).

"Radiotherapy without tattoos: Could this work?" <u>Radiography (Lond). 2020 Nov;26(4):288-</u> 293

Kang, H.; Patel, R.; Roeske, J. C. (2019).

Efficient quality assurance method with automated data acquisition of a single phantom setup to determine radiation and imaging isocenter congruence. J Appl Clin Med Phys 20 (10), pp. 127–133.

Moser, T., M. Creed, R. Walker and G. Meier (2019).

"Radiotherapy tattoos: Women's skin as a carrier of personal memory-What do we cause by tattooing our patients?" Breast J. 2020 Feb;26(2):316-318.

Hoisak, J. D. P., et al. (2018).

"The Role of Optical Surface Imaging Systems in Radiation Therapy." Semin Radiat Oncol 28(3): 185-193.

Mharte, V. (2017).

"Quality assurance for clinical implementation of an Optical Surface monitoring system." Journal of Applied Physics 9(6): 15-22.

Paxton, A. B., et al. (2017).

"Evaluation of a surface imaging system's isocenter calibration methods." J Appl Clin Med Phys 18(2): 85-91.

Krengli M, et al. (2016).

"Three-dimensional surface and ultrasound imaging for daily IGRT of prostate cancer." <u>Radiat Oncol 2016;11(1):159.</u>

Zhao B, et al. (2016).

"Feasibility of Open Mask Immobilization with Optical Imaging Guidance (OIG) for H&N" <u>Radiotherapy. Med Phys 2016;43</u>.

Li G, et al. (2016).

"Characterization of optical-surfaceimaging-based spirometry for respiratory surrogating in radiotherapy." <u>Med Phys 2016;43 (3):1348-1360.</u>

Smith, T., et al. (2016).

"Characterization of a High-Definition Optical Patient Surface Tracking System Across Five Installations." <u>Med Phys 43.</u>

Wiant D, et al. (2016).

"A prospective evaluation of open face masks for head and neck radiation therapy." <u>Pract Radiat Oncol 2016.</u>

Brady, J. L., et al. (2016).

"Analysis of Factors Affecting Benefit from Deep Inspiration Breath Hold Technique in Mediastinal Radiation Therapy for Lymphoma." International Journal of Radiation Oncology • Biology • Physics 96(2): E491.

Brady, J. L., et al. (2016).

"Deep inspiration breath hold with AlignRT' in 3D conformal mediastinal radiotherapy for lymphoma." <u>Radiotherapy and Oncology 119:</u> 5813-5814.

Mamalui-Hunter M Li Z. (2011).

"Evaluation of the Surface Rendering Patient Localization System for Proton Therapy Facility." <u>Med Phys 2011;2011 (38).</u>

Schöffel PJ, et al. (2007).

"Accuracy of a commercial optical 3d surface imaging system for realignment of patients for radiotherapy of the thorax." *Phys Med Biol* 2007;52 (13):3949-3963.

Bert C, et al. (2005).

"A phantom evaluation of a stereo-vision surface imaging system for radiotherapy patient setup." <u>Med Phys 2005;32 (9):2753-2762.</u>

Bidmead M, et al. (2004).

"Investigating the correlation between surface and bony anatomy using 3D surface and portal imaging." <u>Radiotherapy and Oncology 2004;73:5233.</u>

Johnson U, et al. (2004).

"Real time 3D surface imaging for the analysis of respiratory motion during radiotherapy." <u>Int J Radiat Oncol Biol Phys;60</u> (1):S603-S604.

Guidelines

Al-Hallaq, et al. (2022).

AAPM task group report 302: Surface guided radiotherapy. *Medical physics.*

Freislederer, P. et al. (2022).

ESTRO-ACROP guideline on surface guided radiation therapy. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

Discover more at www.visionrt.com

VISI⊕∩**IC** Guiding Radiation Therapy™

Vision RT makes no claims about the contents, relevance or use for clinical decision making of any of the papers listed in this document.

VISI⊕∩**rt** Guiding Radiation Therapy™

SCAN HERE

FOR MORE ONFORMATION ON ALL THE FEATURED PRODUCTS

©2024 Vision RT Ltd. All rights reserved. 1016-0315 Issue 5.0